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Abstract — 2,3-butanediol (2,3-BTD) is an important
substrate for chemical production and at the same time is
highly promising bacterial-based platform substances.
Geobacillus icigianus is a strain of thermophilic genus
Geobacillus, which is currently considered as the potential
bacterial chassis that can be used in biotechnology. A genome-
scale metabolic model of the bacteria has been built using a
computational pipeline for autogeneration with consequent
manual curation. The current version of the model comprises
1678 reactions, 1590 metabolites and 1316 genes and it is the
largest known model for genus Geobacillus. In this work we
demonstrate that Geobacillus icigianus can be potentially used
for the production of 2,3-butanediol from different carbon
sources, one of which is glycerol — a byproduct of chemical
production. Furthermore, this model can be used as a
theoretical platform to gain insight into the metabolism of the
thermophilic bacteria and to predict more favor pathways for
genetic modifications of Geobacillus icigianus strain in
biotechnological goals.
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Introduction

Due to the gradual depletion of fossil fuel sources, rising
oil prices, and the aggravating environmental situation,
which lead to the tight control of the chemical industry, a
question of creating biological factories for the production of
chemical substances is becoming crucial. One of the
important substances in the chemical industry is 2,3-
butanediol (butadiene glycol-2,3). The potential of bacteria
in production of 2,3-butanediol was shown in the early 20th
century [1]. Moreover, the production of 2,3-BTD was
shown for thermophilic bacteria of genus Geobacillus [2].
Based on published data we decided to identify this
capability by Geobacillus icigianus - new strain of
thermophilic bacteria [3]. To solve this issue we have been
used a genome scale metabolic modeling approach, which
could give an opportunity to investigate a bacterial
metabolism [4].

Materials and Methods

Reconstruction of the mathematical model

The complete genome of Geobacillus icigianus strain
was extracted from NCBI Refseq database [5]. Initially we
re-annotated this genome by means of RAST [6]. The
procedure was conducted using standard RAST annotation
scheme. At the next step we used automatic generation
pipeline which is presented in web-service Kbase [7] to
generate a genome-scale metabolic model. Module from
Kbase for building of genome-scale models was harnessed
with standard parameters including gap-filling algorithm.
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Biomass equation was generated automatically and
stoichiometrically equivalent to biomass equation of Bacillus
subtilis. A quality of the draft model was checked out using
Memote web service [8], which demonstrated that
consistency of the developed model is 92%. To improve the
model consistency, we manually curated the draft model in
order to modify SEED [9] reaction names and ID’s on their
equals from BIGG database [10]. We wrote a script on
Python 3.6 using Cobrapy package and replaced all IDs
which compose information about BIGG ID. Afterwards, we
added boundary conditions for drain reactions which are
necessary to describe wildtype growth of the strain. D-
Glucose (glucose) was used as the first carbon source for the
growth and lower bound was set up equal to -17
mmol/gDCWI/h™! according to the published data for closely
related species [11]. The modified GSM model of the strain
was uploaded and analyzed via Optflux tool [12]. Flux
balance analysis conducted in this tool using pFBA approach
showed that growth rate on glucose, as a single carbon
source, compose 0.5 mmol/gDCWI/h™!.

To consider the growth of the bacteria on other carbon
sources we added exchange reactions for metabolites growth
ability on which was shown in the published data: glycerol,
L-arabinose and D-xylose [3]. Metabolic analysis of the
model revealed that to consider the growth on xylose and
arabinose some metabolic reactions, which were not
presented in the model, are required. Analysis of the
metabolic pathways in closely related species of genus
Geobacillus and metabolic pathways of Bacillus subtilis in
SEED, KEGG [13] and BIGG databases resulted in an
addition of the next set of reactions for growth on xylose: D-
Xylose  exchange, D-xylose reversible transport,
Xylulokinase (EC: 2.7.1.17) reactions; for growth on
arabinose: L-ribulokinase (EC:2.7.1.16) and L-ribulose-
phosphate 4-epimerase (EC: 5.1.3.4) reactions. The presence
of all proteins encoded in the Geobacillus icigianus genome
for this set of reactions was checked out using Blastp web-
service. Flux balance analysis for growth of the strain on
abovementioned carbon sources was perfomed in Optflux
tool using pFBA [14] approach too. Visualization of pFBA
outcomes was carried out through Escher web-service [15].

Model modification for 2,3-butanediol production

To identify a list of reactions required for 2,3-butanediol
production we conducted a literature analysis. It turned out
that metabolic reactions to synthesize the substance in the

bacteria comprise: acetolactate synthase (EC:2.2.1.6),
acetolactate decarboxylase (EC: 4.1.1.5) and (R,R)-
butanediol  dehydrogenase (EC:1.1.1.4).  Acetolactate

synthase was originally presented in the model, while other
metabolic reactions were added using Cobrapy. Moreover,
we needed to add (R,R)-butanediol transport m (R,R)-



butanediol exchange reactions. The final version of the GSM
model was uploaded into Memote web-service which
demonstrated that the model consistency did not change
compared to the draft model and equals to 92%.

Model analysis for 2,3-butanediol production optimization

To identify genetic modifications in order to increase 2,3-
butanediol production and simultaneously do not
significantly reduce biomass value we used evolutionary
optimization approach via Optflux. To conduct this type of
the analysis we selected 5 basic simulation algorithms:
pFBA, MiMBL [16], MOMA [17], LMOMA [18] and
ROOM [19]. All algorithms were started with 5000
maximum evolutionary functions and with maximum
number modifications equal to 2. Optimization algorithm
was chosen considering specific options of simulation
methods. LMOMA, MOMA and pFBA simulation methods
were run with Strengh Pareto Evolutionary Algorithm for
reaction under/over expression. MiMBL and ROOM
methods were initialized with Strengh Pareto Evolutionary
Algorithm for the gene under/over expression.

Results

Thus, we generated the first GSM model for G.icigianus
using Kbase web-service and final version of the model
includes 1678 reactions, 1590 metabolites and 1316 genes.
Flux balance analysis of the model showed that flux
distribution in G.icigianus differs from B.subtilis, a model
microorganism metabolic pathways and biomass equation of
which were employed as a template for our model at the
building stage. For instance, there are changes in electron
donor/acceptor reactions in the citric acid cycle (TCA);
missed reaction PGL (EC: 3.1.1.31), which is catalyzed by
not thermostable enzyme, and the model describes the
metabolic feature. Moreover, simulations of the GSM model
demonstrated that an electron donor for oxidative
phosphorylation depends on the carbon source. Growth on
all substrates excluding glycerol showed a presence of lactate
and succinate as excreted compounds, and it is consistent
with experimental data [3]. The developed model predicts
that glucose and glycerol (0.5 mmol/gDCWI/h!) are the
most effective substrates for the growth, but growth on
glycerol needs more oxygen. Furthermore, we matched built
GSM model with published one for Bacillus subtilis
(1YO844) [19]. As a result, the growth rate of G.icigianus is
higher than one of B.subtilis for analogous substrate uptake
rate which corresponds to 1% glucose concentration in the
media according to the published data [20].

Model optimization for 2,3 butanediol production

Optimization analysis of the model in Optflux tool
indicated that all carbon substrates can be used for 2,3-BTD
production. It worth to note that MOMA and ROOM
algorithms were not able to calculate the model. However,
LMOMA, MiMBL, pFBA algorithms predicted glycerol as
the most promising substrate for 2,3-BTD production by
G.icigianus. All reaction modifications to improve the 2,3-
BTD production predicted by the algorithm somehow affect
two metabolic aspects: 1) modifications of the TCA cycle
that lead the reduction of succinate production and 2)
modifications that result in anaerobic or microaerobic growth
conditions. It is interesting that all predicted ways of the
metabolic modifications were earlier experimentally verified
for another biotechnological species [1] and for closely
related Bacillus subtilis [21].
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