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Abstract — Chromatin immunoprecipitation followed by
high throughput sequencing, i.e. ChIP-Seq, is a widely used
experimental technology for the identification of functional
protein-DNA interactions. Nowadays, such databases as GTRD,
ChIP-Atlas and ReMap systematically collect and annotate a
large number of ChIP-Seq datasets generated by distinct peak
callers, including MACS2. The quality control of such datasets
is currently indispensable, since the peak callers may produce
different results for the same ChIP-seq experiment. We have
performed a comparative analysis of intensively used peak
callers with the help of two metrics that control false
positive/negative rates. We have found that MACS2
outperformed its competitors.
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Introduction

Understanding the basic mechanisms of transcription
regulation is a big problem in modern biology. Regulation of
transcription is a complex process in which transcription
factors play a key role. Nowadays, ChIP-Seq experiments are
widely used to detect protein-DNA binding in whole
genomes. To date, several databases, such as GTRD [1],
ChIP-Atlas and ReMap, accumulate ChIP-Seq datasets
obtained by applying various peak callers to the primary ChIP-
Seq data. To control the quality of accumulated datasets
distinct control metrics are used. For example, such well-
known metrics as Non-Redundant Fraction (NRF), PCR
Bottlenecking Coefficient 1 and 2 (PBC1 and PBC2),
Normalized Strand Cross-correlation coefficient (NSC), and
Relative Strand Cross-correlation coefficient (RSC) evaluate
the quality of read alignments for individual genomes. These
metrics were developed as part of the ENCODE project [2].
However, these metrics do not control false positive and false
negative rates. Recently, two quality control metrics, namely,
the False Positive Control Metric (FPCM) and the False
Negative Control Metric (FNCM), were developed on the
base of the population size estimation approach [3].

Several tens peak callers have been developed to generate
transcription factor binding regions (TFBRs) from aligned
ChIP-Seq data. [4] However, a comparative analyses [5, 6] of
peak callers did not reveal so far the best among them. We
performed comparative analysis of the most popular peak
callers — GEM [7], MACS, MACS2 [8], SISSRs [9] and PICS
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[10]. For this purpose, we used the FPCM and FNCM
metrics, as well as 8982 TFBR datasets from the GTRD
database. The conducted comparative analysis showed that
MACS?2 outperformed its competitors.

In this study we applied some rank aggregation (RA)
methods for a meta-analysis of transcription factor binding
sites (TFBSs) obtained from ChIP-seq data publically
available in the GTRD database. Additionally, we are
introducing a new RA method based on the Borda method
utilizing values of FPCM and FNCM quality metrics.

Materials And Methods

To generate TFBR datasets, we used two distinct
scenarios. According to scenario 1, see Fig. 1(A), the four
peak callers - GEM, MACS, PICS, and SISSRs — were applied
independently to the same ChIP-Seq set of reads aligned to the
reference genome. Then the obtained four sets of peaks were
merged into a final dataset. According to scenario 2, MACS
was replaced by MACS2, and the final TFBR dataset was
obtained by overlapping the peaks instead of merging them.
The processes of merging and overlapping peaks are
demonstrated in Fig. 1.

To compare peak callers, we used FPCM and FNCM
metrics [3]. FNCM for each peak caller was defined as the
ratio of the observed number of its peaks to the estimated
number of genuine peaks. FNCM varies in the range [0.0; 1.0].
The closer the FNCM value to 1.0, the lower the false-
negative rate, and the values closer to 0.0 indicate that a large
number of genuine peaks have been missed. FPCM was
defined as the ratio of the observed number of orphans in the
TFBR dataset to the estimated number of true orphans. In turn,
orphans were defined as separate peaks that did not overlap
with other initial peaks. If the difference between the observed
and estimated number of orphans is insignificant, then the
FPCM should be close to 1. Such FPCM values indicate that
erroneously formed peaks are practically absent. However, if
the FPCM considerably exceeds 1 (e.g., FPCM > 2.0 or FPCM
> 3.0), then at least half or more orphans are classified as false
positives.
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Fig. 1. Two scenarios for peak caller comparison. (A) scenario definition;
(B) ROC curves and AUC values in two scenarios

Results And Discussion

To obtain reliable conclusions, we performed a
comparative analysis of 8982 human ChIP-Seq experiments
stored in GTRD. For each experiment, we calculated two
FPCM values, say FPCM1 and FPCM2, which corresponded
to scenario 1 and scenario 2, respectively. In general, in 70.9%
of experiments, replacing MACS with MACS2 resulted in
improved quality by lowering FPCM. In particular, for
experiments PEAKS034562 (REST), PEAKS033231
(GATA2) and PEAKS034509 (ESR1), the pair of values
(FPCM1, FPCM2) is equal to (14.431, 1.167), (10.778, 1.132)
and (11.514, 1.204).

We performed a direct comparison of peak callers by
comparing their FNCM. Thus, for experiment PEAKS034562
in scenario 1 the following FNCM values were achieved:
MACS - 0.967, SISSRs — 0.909, GEM — 0.807 and PICS —
0.04. Hence, MACS has outperformed its competitors because
its FNCM is maximal. Overall, in 56.1% of the experiments
MACS showed better results, while GEM, SISSRs, and PICS
outperformed in 18.5%, 16.2% and 9.2% of experiments,
respectively. In scenario 2, MACS2 showed better results in
69.5%, while GEM, SISSRs and PICS outperformed in 8.4%,
13.9% and 8.2% of experiments, respectively.
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Finally, the usefulness of transition from scenario 1 to
scenario 2 can be confirmed by increasing the accuracy of
identifying site motifs in the three ChIP-Seq datasets
mentioned above. To identify the motif, we used the following
models of position weight matrix from the HOCOMOCO
database [11]:

REST HUMAN.H11IMO.0.A,
GATA2 HUMAN.H1IMO.0.A,
ESR1 HUMAN.H1IMO.0.A.

Fig. 1(B) demonstrates that the transition from scenario 1
to scenario 2 increased the accuracy of site identification. This
increase in accuracy is in good agreement with the decrease in
FPCM values.

Conclusions

Comparative analysis of GEM, MACS, MACS?2, SISSRs
and PICS revealed that MACS2 outperformed its competitors
in terms of the FPCM and FNCM metrics.
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