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Abstract: Regression models that connect agronomic traits to climatic factors provide valu-
able insights into phenological characteristics of cultivars. The genotype-by-environment 
interactions are modeled by a weighted sum of pairwise products between a control func-
tions and group indicator variables. In contrast to existing modeling frameworks in our 
 approach the analytic form of a control function, regression coefficients and a set of predic-
tors are inferred by stochastic minimization of the deviation of the model output from data. 
The approach was successfully applied to the three datasets for soybean and chickpea to 
predict time to flowering with coefficient of determination 0.45-0.97.
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1. Introduction
Plants react to climate change with changing phenotype inte-
grating climate-biospheric interactions (Morisette et al., 2009). 
Though mathematical modeling is one of the most important 
tools for prediction of phenologiclal traits the  accuracy re-
mains a problem (Richardson et al., 2012). The duration of 
developmental stages must closely coincide with the avail-
able season for acceptable results. Widely used methods for 
prediction of phenological traits are calculation of the sum of 
temperatures above the temperature minimum and regression 
models (Major et al., 1975; Pedersen et al., 2004; Setiyono 
et al., 2007). Several successful crop simulation models like 
SSM (Soltani et al., 2006a, 2006b), DSSAT (Boote et al., 
2013; Jones et al., 2003, 2017a), APSIM (Keating et al., 2003) 
and others (Battisti et al., 2018; Williams et al., 1989) have 
been developed for legumes. Biophysical and biochemical 
processes are described with differential equations problem-
specific parameters for genotype, soil, weather and economic 
factors. Developed in the absence of genomic information, 
these models considered genotype influence at best as a set of 
given “genetic coefficients” that do not correspond to actual 
genes (Hwang et al., 2017). Consequently, the inability of these 
models to take gene-by-environment interactions into account 
restricts the prediction of phenological traits of cultivars across 
different geographical locations and genotypes (Vadez et al., 
2013). We propose a more general approach implemented in 
the computer program called ‘nlreg’, in which the analytic 
form of a control function together with regression coef-
ficients and a set of predictors are inferred automatically by 
stochastic minimization of the deviation of the model output  
from data.

2. Materials and methods
The interactions between factors and K different geographi-
cal locations or genotypes is modeled by a weighted sum of 
pairwise products between the control functions Fn and the 
group indicator variables di

k such that di
k=1, for plant i from 

group k and =0 otherwise. Thus, for a set of data records (yi, 
Xi), where yi is the phenotype and Xi is the vector of climatic 

factors for plant i, the computer program presented here con-
structs Model (1).

where βn and ζk∙N+n are the regression coefficients, N is the 
number of functions Fn, and εi is the standard error.

The analytic form of function Fn is constructed from the 
vector of codons of length M using Grammatical Evolution 
(GE) (Noorian et al., 2016; O’Neill and Ryan, 2001) which 
utilizes a context-free grammar (CFG). The CFG is defined 
by the 4-tuple of a finite set of terminal symbols, non-terminal 
symbols, the production rule set and the start symbol (Aho et 
al., 2006). In our approach, non-terminal symbols are defined 
as arithmetic operations “+”, “–”, “*”, “/” or expressions X, 
(X – Const), or 1/(X – Const) where the members of termi-
nals set X and Const denote a name of the predictor and the 
constants, respectively.

The model is further built using the LASSO algorithm 
(Tibshirani, 1996) which minimizes the sum of squared dif-
ferences between model output and data and penalizes the sum 
of absolute values of regression coefficients βn, thus reducing 
non-important ones to 0.

The vector of codons is determined by minimizing the ap-
proximation error using the stochastic optimization technique 
called the Differential Evolution Entirely Parallel (DEEP) 
method (Kozlov and Samsonov, 2011; Kozlov et al., 2016). 
Differential Evolution (DE) was proposed in 1995 (Storn, 
1995, 1997). DEEP incorporates several recent enhancements 
(Fan and Lampinen, 2003; Kozlov et al., 2016; Zaharie, 2002). 
DEEP employs the pool of worker threads with an asynchro-
nous queue of tasks to evaluate the individual solutions in 
parallel. The code is available on GitLab (https://gitlab.com/
mackoel/deepmethod).

Although a few GE implementations are freely available 
(Noorian et al., 2016; Peter Harrington, 2018), they either 
lack a specific set of expressions or show low performance 
in our tasks. We implemented GE in C++ using Armadillo 
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(Sanderson and Curtin, 2016), mlpack (Curtin et al., 2013), 
HDF5, HighFive (The Blue Brain Project, 2018) and Qt for 
efficient matrix operations, the LASSO method, data input-
output and utility functions, respectively. The code is available 
on GitLab (https://gitlab.com/mackoel/nlreg) and can be com-
piled for GNU\Linux or MS Windows 8.1 and 10 operating  
systems.

The program is accessed using a command line interface 
that accepts several options. Tabular data is read from a HDF5 
file and parameters are supplied in a file in INI-format. To fa-
cilitate high-performance computing, the program can utilize 
OpenMP and MPI parallelization technologies.

3. Results and discussion
The approach was successfully applied to the three datasets 
for soybean and chickpea to predict time to flowering. For a 
dataset that comprises 379 plants of 9 different soybean ac-
cessions phenotyped at Pushkin VIR stations in 1999-2013, 
the method constructed a more accurate model (coefficient of 
determination R2 = 0.60) than the previous one in (Kozlov et 
al., 2018; Seferova and Novikova, 2015). 

The models for chickpea VIR landraces from Turkey 
(R2 = 0.45) and Ethiopia (R2 = 0.52) were built in (Kozlov 
et al., 2019b). The comparison of model predictions with 
experimental data is presented in Figure 1. Modeling revealed 
the difference in the impacts of temperature and precipitation. 
The impact of temperature was 60 and 48 % for Turkey and 
Ethiopia, respectively. The impact of precipitation was esti-
mated at 86 and 89 % for Turkey and Ethiopia, respectively.

The model for wild chickpea collected by von Wettberg et 
al. (2018) (R2 = 0.97) showed that the genotype-by-environ-
ment interactions accounted for about 17.2 % of variation in 
time to flowering (Kozlov et al., 2019a).

To access the practical identifiability of model parameters, 
we applied a bootstrap approach (Mudelsee, 2010) and per-
formed 1999 runs with sampled datasets (Efron and Tibshirani, 
1993). Confidence intervals for the 95 % significance level for 
the intercept and 5 regression coefficients for functions Fn are 
presented in Figure 2. Five out of six coefficients are consid-
ered identifiable as their confidence intervals do not contain 
zeroes. Genotype-by-environment interactions were signifi-
cantly non-zero (P < 0.05 in t-test) for 56 out 90 combinations 
of functions Fn with allele combinations at 6 SNP positions.

4. Conclusions
In contrast to existing modeling frameworks, in our approach 
control functions are automatically composed in analytic 
form that allows a wider range of non-linear dependencies 
between the phenotype and climatic factors to be explored. 
The results of numerical experiments with the wild chickpea 
dataset showed that certain environmental variables differ-
ently affect the flowering time of different genotypes. The 
analysis revealed that the 95 % confidence intervals for five 
out of six regression coefficients did not contain zeroes and 
thus represent a well-established influence of the climatic 
factor on time to flowering. 56 regression coefficients of 
genotype-by-environment interactions are significantly non-
zero. Consequently, the computer program developed is a 

Figure 1. Comparison of model predictions with experimental data for 
models for chickpea VIR landraces from Turkey and Ethiopia.

Figure 2. Confidence intervals for the 95 % significance level for the 
intercept and 5 regression coefficients for functions Fn.
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useful tool for mathematical modeling of phenological traits 
like flowering time and the investigation of genotype-by-
environment interactions.

References
Aho A.V., Lam M.S., Sethi R., Ullman J.D. Compilers: Principles, 

Techniques, and Tools (2Nd Edition). Boston, MA, USA: Addison-
Wesley Longman Publishing Co., Inc., 2006.

Battisti R., Sentelhas P.C., Boote K.J. Sensitivity and requirement of 
improvements of four soybean crop simulation models for climate 
change studies in Southern Brazil. International Journal of Biome-
teorology. 2018;62:823–832.

Boote K.J., Jones J.W., White J.W., Asseng S., Lizaso J.I. Putting Mech-
anisms into Crop Production Models. Plant Cell Environ. 2013.

Curtin R.R., Cline J.R., Slagle N.P., March W.B., Ram P., Mehta N.A., 
Gray A.G. mlpack: A Scalable C++ Machine Learning Library. 
Journal of Machine Learning Research. 2013;14:801–805.

Efron B., Tibshirani R. An introduction to the bootstrap. New York: 
Chapman & Hall, 1993.

Fan H.-Y., Lampinen J. A Trigonometric Mutation Operation to Differ-
ential Evolution. Journal of Global Optimization. 2003;27:25.

Hwang C., Correll M.J., Gezan S.A., Zhang L., Bhakta M.S., Valle-
jos C.E., Boote K.J., Clavijo-Michelangeli J.A., Jones J.W. Next 
generation crop models: A modular approach to model early vegeta-
tive and reproductive development of the common bean (Phaseolus 
vulgaris L). Agricultural Systems. 2017;155:225–239.

Jones J.W., Hoogenboom G., Porter C.H., Boote K.J., Batchelor W.D., 
Hunt L.A., Wilkens P.W., Singh U., Gijsman A.J., Ritchie J.T. The 
DSSAT cropping system model. European Journal of Agronomy. 
2003;18:235–265.

Jones J.W., Antle J.M., Basso B., Boote K.J., Conant R.T., Foster I., 
Godfray H.C.J., Herrero M., Howitt R.E., Janssen S. et al. Brief his-
tory of agricultural systems modeling. Agricultural Systems. 2017a; 
155:240–254.

Keating B., Carberry P.S., Hammer G., Probert M.E., Robertson M.J., 
Holzworth D., Huth N.I., Hargreaves J., Meinke H., Hochman Z. et 
al. An overview of APSIM, a model designed for farming systems 
simulation. European Journal of Agronomy. 2003;18:267–288.

Kozlov K., Samsonov A. DEEP -- Differential Evolution Entirely Par-
allel Method for Gene Regulatory Networks. Journal of Supercom-
puting. 2011;57:172–178.

Kozlov K., Samsonov A.M., Samsonova M. A software for parameter 
optimization with Differential Evolution Entirely Parallel method. 
PeerJ Computer Science. 2016;2:e74.

Kozlov K., Singh A., Berger J., Wettberg E.B., Kahraman A., Aydo-
gan A., Cook D., Nuzhdin S., Samsonova M. Non-linear regression 
models for time to flowering in wild chickpea combine genetic and 
climatic factors. BMC Plant Biology. 2019a;19:94.

Kozlov K.N., Novikova L.Yu., Seferova I.V., Samsonova M.G. 
A Mathematical Model of the Effect of Climatic Factors on Soybean 
Development. Biophysics. 2018;63:136–137.

Kozlov K.N., Samsonova M.G., Nuzhdin S.V. Regression Model For 
Time To Flowering Of Chickpea Landraces. Russian Journal of Ge-
netics. 2019b;55:1–5.

Major D.J., Johnson D.R., Tanner J.W., Anderson I.C. Effects of day-
length and temperature on soybean development. Crop Science. 
1975;15:174–179.

Morisette J.T., Richardson A.D., Knapp A.K., Fisher J.I., Graham E.A., 
Abatzoglou J., Wilson B.E., Breshears D.D., Henebry G.M., 
Hanes J.M. et al. Tracking the rhythm of the seasons in the face of 

global change: phenological research in the 21st century. Frontiers 
in Ecology and the Environment. 2009;7:253–260.

Mudelsee M. Climate time series analysis: classical statistical and boot-
strap methods. Dordrecht; New York: Springer, 2010.

Noorian F., de Silva A.M., Leong P.H.W. gramEvol : Grammatical Evo-
lution in R. Journal of Statistical Software. 2016;71:1–26.

O’Neill M., Ryan C. Grammatical evolution. IEEE Transactions on 
Evolutionary Computation. 2001;5:349–358.

Pedersen P., Boote K.J., Jones J.W., Lauer J.G. (). Modifying the 
CROPGRO-Soybean Model to Improve Predictions for the Upper 
Midwest. AGRONOMY JOURNAL. 2004;96:556–564.

Harrington P. Genetic Programming C++ Code. 2018.
Richardson A.D., Anderson R.S., Arain M.A., Barr A.G., Bohrer G., 

Chen G., Chen J.M., Ciais P., Davis K.J., Desai A.R. et al. Terrestrial 
biosphere models need better representation of vegetation phenol-
ogy: results from the North American Carbon Program Site Synthe-
sis. Global Change Biology. 2012;18:566–584.

Sanderson C., Curtin R. Armadillo: a template-based C++ library for 
linear algebra. Journal of Open Source Software. 2016;1:26.

Seferova I.V., Novikova L.Yu. Climatic factors that impact the early-
maturing soybean accessions in North-West Russia. Works on Ap-
plied Botany, Genetics and Breeding. 2015;176:88–97.

Setiyono T.D., Weiss A., Specht J., Bastidas A.M., Cassman K.G., Do-
bermann A. Understanding and modeling the effect of temperature 
and daylength on soybean phenology under high-yield conditions. 
Field Crops Research. 2007;100:257–271.

Soltani A., Robertson M.J., Mohammad-Nejad Y., Rahemi-Karizaki A. 
Modeling chickpea growth and development: Leaf production and 
senescence. Field Crops Research. 2006a;99:14–23.

Soltani A., Hammer G.L., Torabi B., Robertson M.J., Zeinali E. Model-
ing chickpea growth and development: Phenological development. 
Field Crops Research. 2006b;99;1–13.

Storn R. Differential evolution - a simple and efficient adaptive scheme 
for global optimization. 1995.

Storn R. Differential Evolution – A Simple and Efficient Heuristic for 
Global Optimization over Continuous Spaces. DIFFERENTIAL 
EVOLUTION. 1997:19.

Tibshirani R. Regression shrinkage and selection via the lasso. J. of the 
Royal Statistical Society : Series B. 1996;58:267–288.

Vadez V., Soltani A., Sinclair T.R. Crop simulation analysis of pheno-
logical adaptation of chickpea to different latitudes of India. Field 
Crops Research. 2013;146:1–9.

von Wettberg E.J.B., Chang P.L., Başdemir F., Carrasquila-Garcia N., 
Korbu L.B., Moenga S.M., Bedada G., Greenlon A., Moriuchi K.S., 
Singh V. et al. Ecology and genomics of an important crop wild rela-
tive as a prelude to agricultural innovation. Nature Communications. 
2018;9.

Williams J.R., Jones C.A., Kiniry J.R., Spanel D.A. The EPIC Crop 
Growth Model. TRANSACTIONS of the ASAE. 1989;32:497–511.

Zaharie D. Parameter Adaptation in Differential Evolution by Control-
ling the Population Diversity. In Proc. of 4th InternationalWorkshop 
on Symbolic and Numeric Algorithms for Scientific Computing. 
Petcu D. (Ed.). Timisoara, Romania: Analele Universitatii Timi-
soara, 2002. pp. 385–397.

Acknowledgements. The work is supported by the Federal Tar-
geted Program (Agreement No. 14.575.21.0136 from 26.09.2017, 
 RFMEFI57517X0136). Calculations were performed in Supercomputer 
Center of Peter the Great St.Petersburg Polytechnic University.

Conflict of interest. The authors declare no conflict of interest.  


	A computer program for construction of regression function 
for phenotype in agroclimatic models with interactions
	K.N. Kozlov1 *, S.V. Nuzhdin1, 2, M.G. Samsonova1


