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Finding genetic markers that reflect adaptation of plants 
to certain ecological niches is an important task with many 
possible practical outcomes. This field of plant molecular 
ecology is vast. Modern methods of genetic analysis applied 
to plants proved fruitful in solving many ecological problems: 
findings such as conditional expression and methylation 
changes led to insights into the genetic basis of adaptation to 
many stress factors: drought (Cortés et al., 2012; Shi et al., 
2013; Rico et al., 2014), herbivorous insects (Smith, Clement, 
2012; Eyres et al., 2016), cold hardiness (Gusta, Wisniewski, 
2013), salinity (Hasegawa, 2013), soil acidity (Kochian et al., 
2015) and others.

Light intensity is one of the most important abiotic factors 
in plant life. Plants mostly growing in shady habitats can be 
either shade-loving (sciophilous) or just shade-tolerant. Shade-
tolerant plants, or scioheliophytes, can cope with low light 
levels but are also able to grow in more or less open habitats 
with some degree of direct sunlight, while shade-loving plants 
stunt their growth or get sunburns if exposed to direct sun.

It is not yet fully known what genetic factors determine the 
development of shade tolerance, but certain data suggest that 
these traits may be inherited and are under natural selection. 
In the recently sequenced Panax ginseng genome, there is 
an amplification of chlorophyll a/b proteins (CAB), which is 
proposed to be a shade adaptation (Kim et al., 2018). There 
are also works that show some genetic basis for shade-loving 
and shade-tolerance predisposition in tomato (Sulistyowati et 
al., 2016; Ritonga et al., 2018).

Species in the genus Allium are adapted to habitats with 
a wide range of light intensity, from shady forests to open 
habitats like meadows, steppes and deserts. We have analyzed 
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plastome sequences of twelve wild and cultivated Allium 
species. Ten of them, namely A. ursinum, A. paradoxum 
(MH053150), A. macleanii, A. nutans, A. platyspathum, 
A. schoenoprasum, A. pskemense, A. obliquum (MH157875), 
A. fistulosum, A. victorialis were sequenced, assembled and 
annotated in our lab. Sequences for A. cepa (KF728080) and 
A. sativum (KX683282) were obtained from works of von 
Kohn et al. (2013) and Filyushin et al. (2016).

A wealth of data regarding higher plants’ plastide genomes 
is available at present. Full plastomes of more than 8000 plant 
species have been currently analyzed, of which more than 10 
belong to the genus Allium (for several Allium species, no final 
annotations have been published yet and we are not analyz-
ing them in this work). The plastomes of all studied Allium 
species contain the same number of tRNA genes (30 in total, 
of them 9 are represented by two copies in IR) and rRNA 
(8 genes, all 4 are represented by two copies in IR), 79 genes 
encode proteins. In general, the Allium plastomes analyzed 
had similar numbers, arrangement and orientation of genes 
(data not published). Yet some of the analyzed species proved 
to have deletions of certain genes, e. g. the small ribosome 
subunit gene rps16 (Belenikin et al., 2016).

The A. paradoxum plastome was quite distinct from other 
species in that all its ndh genes were subject either to dele-
tion or to pseudogenization. It also had a large (4 825 kB) 
inversion in the SSC region. A number of other distinctions 
in the plastome structure of the species have been identified 
(Omelchenko et al., 2019, in press). All other analyzed Allium 
species did not have any alterations in the structure of the ndh 
gene family. The NADH-dehydrogenase complex protects 
plants in stress conditions, preventing oxidative stress, partici-
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pating in electron cyclic transport and chloroplast respiration 
at night. It is divided into five subcomplexes, of which only 
one, the membrane subcomplex, is encoded by plastome genes 
only, while the others are encoded by nuclear or both nuclear 
and plastome genes. Genes of the NADH-dehydrogenase 
complex are also found in the mitochondrial genome, but 
they are of a different origin compared to plastome ones (ac-
cording to Onoiko, Zolotareva, 2014). The proteins of the 
membrane NADH-dehydrogenase complex in the plastome 
are encoded by 11 ndh genes (ndhA–K). Deletion of different 
plastome genes is sometimes accompanied by their transfer to 
the mitochondrial or nuclear genome (Logacheva et al., 2016; 
Lin et al., 2017). In some representatives of Pinaceae (Picea 
abies and Pinus massoniana), non-functioning fragments of 
ndh genes were found in the nuclear genome (Ranade et al., 
2016; Ni et al., 2017), and in several Orchidaceae, their cop-
ies were found in mitochondrial genomes (Lin et al., 2015). 
Deletion or pseudogenization of plastome ndh genes is not 
always accompanied by their copies appearing elsewhere, e. g. 
in many orchids, despite the loss of ndh plastome genes, they 
were not found in their nuclear genome either (Cai, 2015; Lin 
et al., 2017). Ruhlman et al. (2015) have analyzed transcrip-
tomes of both flowering plants and gymnosperms (Pinaceae, 
Gnetales, Geraniaceae and Orchidaceae) that had lost plastome 
ndh genes and did not found any functional copies of these  
genes.

In a considerable number of plant species belonging to 
unrelated taxonomic groups some ndh genes are deleted, 
while the others had become pseudogenes (e. g. Pinaceae 
(Ranade et al., 2016; Ni et al., 2017), Gnetales (Ranade et 
al., 2016), Orchidaceae (Chang et al., 2005; Lin et al., 2017) 
and others). In all cases mentioned above, all ndh plastome 
genes had lost their function. It is possible that this deletion 
is linked to operon organization of plastome genes (Sander-
son, 2015). In particular, ndh genes are also organized into 
an operon (Maier et al., 1995; del Campo et al., 2005). Loss 
of ndh genes is considered to be an ancient trait, common to 
all Pinaceae (Lin et al., 2010; Wu et al., 2011). On the other 
hand, deletions of ndh genes in Orchidaceae had most likely 
occurred independently in several taxonomic lines in the fa-
mily (Lin et al., 2015).

Considering that many unrelated taxa had lost their plas-
tome ndh genes independently, we can speculate that this 
feature is a consequence of convergent evolution. An indirect 
confirmation of ndh gene defunctionalization being an adap-
tive event can be found in the fact that it occurs in plants as 
primitive as Marchantiophyta (Wickett et al., 2008). 

Mutant ndh gene types are almost never affecting the 
phenotype if the plant is growing in its optimal conditions, 
but these plants are less stress tolerant. It is possible that 
electron cyclic transport is required for photosynthesis to be 
effective in stress conditions, such as drought, heat, high light 
intensity (Horvath et al., 2000; Wang et al., 2006; Sanderson 
et al., 2015; Yamori et al., 2015), and also in low light levels, 
as the NADH-dehydrogenase complex is known to mediate 
the minor pathway of electron cyclic transport in photo- 
system I. Analysis of ecological and trophic preferences of 
plants with ndh deletions has shown that it is common in plants 
with some degree of heterotrophy (Wicke et al., 2011; Petersen 

et al., 2015; Silva et al., 2016, 2018; Shin, Lee, 2018). On the 
other hand, hemiparasitic plants do not always defunctionalize 
their ndh genes. All ndh genes are functional in the plastome 
of Aureolaria virginica belonging to Orobanchaceae, a family 
characterized by a different level of ndh gene pseudogeniza-
tion (Frailey et al., 2018).

Nevertheless, a full loss of all ndh genes can be found not 
only in plants with various degrees of heterotrophy, but also 
in obligate autotrophic species. Besides Allium paradoxum 
it was found in some Pinaceae (Ni et al., 2017), in Erodium 
(Blazier et al., 2011), in the monotypic genera Circaeaster 
and Kingdonia (Circaeasteraceae), and even in Cactaceae in 
Carnegiea gigantea (Sanderson et al., 2015). 

At least some events of ndh pseudogenization may be 
possibly linked to light intensity adaptations. As was men-
tioned before, a properly functioning NADH-dehydrogenase 
complex allows plants to adapt flexibly to light intensities 
that are far from optimal, while defects in it may influence 
plant reactions to both high (800 μmol photons m−2 s−1) and 
low (200 μmol photons m−2 s−1) light intensity (Yamori et al., 
2015; Ruhlman et al., 2015).

As the loss of ndh genes makes intense light a stress 
factor, we suppose that ndh gene defunctionalization and 
shade-loving habit are linked in Allium paradoxum. All the 
species in the study that are related to A. paradoxum had a full 
functioning set of ndh genes. Its closest relative in the study, 
A. ursinum, is a representative of the same evolutionary line 
(first) and the same subgenus. On a phylogenetic tree, these 
species are in neighboring clades (Hanelt, 1996; Friesen, 
Fritsch, 2006). A. ursinum also prefers forest habitats, but it 
requires rather high light conditions, starting to grow before 
canopy closure, and its distribution is thought to be limited 
mostly by water availability, as it can grow successfully in 
open habitats if precipitation is high and evenly distributed 
or in the vicinity of rivers and streams (Oborny et al., 2011). 
Thus we can suppose that historically both understorey Allium 
species were shade-tolerant, but after the loss of functionality 
of its ndh genes A. paradoxum became a shade-loving species 
and lost the ability to grow in open habitats.

Nevertheless, several species with the defunctionalization 
of ndh genes grow in mesic or arid open habitats and do not 
suffer from intense light (Carnegiea, Pinus, Circaeaster and 
Kingdonia), and thus had supposedly developed a different 
mechanism of light stress tolerance than the NADH gene 
complex.
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