Novel amyloid-forming protein in Escherichia coli

M. Belousov¹*, S. Bondarev¹, A. Kosolapova^{1, 2}, K. Antonets^{1, 2}, M. Belousova², A. Sulatskaya³, M. Sulatsky³, G. Zhouravleva¹, I. Kuznetsova³, K. Turoverov^{3, 4}, A. Nizhnikov^{1, 2}

¹Saint Petersburg University, St. Petersburg, Russia

² All-Russia Research Institute for Agricultural Microbiology, Pushkin, St. Petersburg, Russia

³ Institute of Cytology RAS, St. Petersburg, Russia

⁴ Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia

* e-mail: belousovmix@gmail.com

Key words: secreted metalloprotease, functional amyloids, bacteria, Escherichia coli

Motivation and Aim: Amyloids are protein fibrils with a characteristic spatial structure. In previous studies, using a method for the proteomic screening and identification of amyloids (PSIA) [1], we identified 61 proteins of *Escherichia coli* that formed detergent-resistant aggregates *in vivo* and without overproduction [2]. Among these proteins, YghJ was the most enriched with bioinformatically predicted amyloidogenic regions. YghJ is a lipoprotein and important virulence factor of *E. coli* containing the zinc metalloprotease M60-like domain (YghJ_M) that is involved in the pathogenesis of the enterotoxigenic strains via mucin degradation in the intestine.

Methods and Algorithms: To analyze amyloid properties of the YghJ_M fibrils *in vitro*, transmission electron, confocal and polarization microscopies of the fibrils were used. For *in vivo* analysis, curli-dependent amyloid generator system (C-DAG), which provides export of the target protein to the surface of bacterial cells, was employed.

Results: We detected detergent-resistant aggregates of YghJ_M by SDS-PAGE and SDD-AGE and confirmed that these aggregates are resistant to α -chymotrypsin protease treatment. We analyzed the fibrillary morphology of the obtained YghJ_M aggregates using transmission electron microscopy. Next, we demonstrated that the YghJ_M aggregates bind Thioflavin-T amyloid-specific dye and exhibit CD-spectra typical for protein aggregates rich in β -sheets. The Congo red stained YghJ_M fibrils demonstrated apple-green birefringence which is considered to be the "gold standard" for verification of the amyloid structure. Finally, we showed that YghJ_M forms amyloid fibrils on the surface of the *Escherichia coli* cells using C-DAG [3].

Conclusion: We demonstrated that $YghJ_M$ forms amyloid fibrils *in vitro* and *in vivo*. Our data on the amyloid properties of the YghJ protein highlight the role of this protein in the pathogenesis and suggest possible mechanism for its functioning.

Acknowledgements: Supported by the Grants of the President of the Russian Federation (MK-3240.2017.4, MK-512.2017.4) and by RFBR (16-34-60153, 17-54-150002).

References

- 1. Nizhnikov A.A. et al. (2016) Interaction of prions causes heritable traits in *Saccharomyces cerevisiae*. PLoS Genetics. 12(12). e1006504.
- Antonets K.S. et al. (2016) Proteomic analysis of *Escherichia coli* protein fractions resistant to solubilization by ionic detergents. Biochemistry (Moscow). 81(1):34-46.
- Belousov M.V. et al. (2018) M60-like metalloprotease domain of the *Escherichia coli* YghJ protein forms amyloid fibrils. PLoS ONE. 13(1):e0191317.